Positive selection on human gamete-recognition genes
نویسندگان
چکیده
Coevolution of genes that encode interacting proteins expressed on the surfaces of sperm and eggs can lead to variation in reproductive compatibility between mates and reproductive isolation between members of different species. Previous studies in mice and other mammals have focused in particular on evidence for positive or diversifying selection that shapes the evolution of genes that encode sperm-binding proteins expressed in the egg coat or zona pellucida (ZP). By fitting phylogenetic models of codon evolution to data from the 1000 Genomes Project, we identified candidate sites evolving under diversifying selection in the human genes ZP3 and ZP2. We also identified one candidate site under positive selection in C4BPA, which encodes a repetitive protein similar to the mouse protein ZP3R that is expressed in the sperm head and binds to the ZP at fertilization. Results from several additional analyses that applied population genetic models to the same data were consistent with the hypothesis of selection on those candidate sites leading to coevolution of sperm- and egg-expressed genes. By contrast, we found no candidate sites under selection in a fourth gene (ZP1) that encodes an egg coat structural protein not directly involved in sperm binding. Finally, we found that two of the candidate sites (in C4BPA and ZP2) were correlated with variation in family size and birth rate among Hutterite couples, and those two candidate sites were also in linkage disequilibrium in the same Hutterite study population. All of these lines of evidence are consistent with predictions from a previously proposed hypothesis of balancing selection on epistatic interactions between C4BPA and ZP3 at fertilization that lead to the evolution of co-adapted allele pairs. Such patterns also suggest specific molecular traits that may be associated with both natural reproductive variation and clinical infertility.
منابع مشابه
Sexual selection at the protein level drives the extraordinary divergence of sex-related genes during sympatric speciation.
An increasing number of molecular studies are indicating that, in a wide variety of species, genes directly related to fertilization evolve at extraordinarily high rates. We try to gain insight into the dynamics of this rapid evolution and its underlying mechanisms by means of a simple theoretical model. In the model, sexual selection and sympatric speciation act together in order to drive rapi...
متن کاملPositive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin.
Bindin is a gamete recognition protein of sea urchins that mediates species-specific attachment of sperm to an egg-surface receptor during fertilization. Sequences of bindin from closely related urchins show fixed species-specific differences. Within species, highly polymorphic bindin alleles result from point substitution, insertion/deletion, and recombination. Since speciation, positive selec...
متن کاملEvolution of gamete recognition proteins.
REVIEW Although fertilization has been studied for more than a century, the cell surface proteins mediating the process are only now becoming known. Gamete interaction in animals appears to be molecularly complex. Although it is difficult to generalize at present, diversity of structure may be a recurring theme in the evolution of fertilization proteins. Examples of rapid evolution of fertiliza...
متن کاملComparison of gamete compatibility between two blue mussel species in sympatry and in allopatry.
Recent demonstrations of positive selection on genes controlling gamete compatibility have resulted in a proliferation of hypotheses concerning the sources of selection. We tested a prediction of one prominent hypothesis, selection to avoid hybridization (i.e., reinforcement), by comparing heterospecific gamete compatibility in two Mytilus edulis populations: one population in Cobscook Bay, Mai...
متن کاملSperm competition and the evolution of gametic compatibility in externally fertilizing taxa.
Proteins expressed on the surface of sperm and egg mediate gametic compatibility and these proteins can be subject to intense positive selection. In this review, we discuss what is known about the patterns of adaptive evolution of gamete recognition proteins (GRPs). We focus on species that broadcast eggs and sperm into the environment for external fertilization, as the ease of observing and ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2018